Molecular Identification and Characterization of the Arabidopsis D,D-Dienoyl-Coenzyme A Isomerase, a Peroxisomal Enzyme Participating in the b-Oxidation Cycle of Unsaturated Fatty Acids
نویسندگان
چکیده
Degradation of unsaturated fatty acids through the peroxisomal b-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core b-oxidation cycle. The auxiliary enzyme D,D-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) D,D-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have D,D-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the b-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the D,D-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has D,D-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
منابع مشابه
The crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis.
BACKGROUND The degradation of unsaturated fatty acids is vital to all living organisms. Certain unsaturated fatty acids must be catabolized via a pathway auxiliary to the main beta-oxidation pathway. Dienoyl-coenzyme A (dienoyl-CoA) isomerase catalyzes one step of this auxiliary pathway, the isomerization of 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, and is imported into both mit...
متن کاملIDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids.
In Saccharomyces cerevisiae the metabolic degradation of saturated fatty acids is exclusively confined to peroxisomes. In addition to a functional beta-oxidation system, the degradation of unsaturated fatty acids requires auxiliary enzymes, including a Delta2, Delta3-enoyl-CoA isomerase and an NADPH-dependent 2,4-dienoyl-CoA reductase. We found both enzymes to be present in yeast peroxisomes. T...
متن کاملNADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms.
The mitochondrial metabolism of 5-enoyl-CoAs, which are formed during the beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms, was studied with mitochondrial extracts and purified enzymes of beta-oxidation. Metabolites were identified spectrophotometrically and by high performance liquid chromatography. 5-cis-Octenoyl-CoA, a putative metabolite o...
متن کامل2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.
Several inherited disorders of fatty acid beta-oxidation have been described that relate mainly to saturated precursors. This study is the first report of an enzyme defect related only to unsaturated fatty acid oxidation and provides the first in vivo evidence that fat oxidation in humans proceeds by the reductase-dependent pathway. The patient was a black female, presenting in the neonatal per...
متن کاملPeroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical c...
متن کامل